

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AKRON RUBBER DEVELOPMENT LABORATORY, INC. 2887 Gilchrist Road

Akron, OH 44305

Rick Behne Phone: 330 794 6600

CHEMICAL

Valid To: January 31, 2026 Certificate Number: 0255.02

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests on <u>adhesives</u>, <u>plastics</u>, <u>thermoplastics</u>, <u>rubbers and elastomers</u>:

SPECTROSCOPY

Test Method	<u>Test</u>
ASTM D3677	Identification by Infrared Spectrophotometry
ASTM D5673	Elements in Water by Inductively Coupled
	Plasma-Mass Spectrometry
ASTM D7558	Colorimetric/Spectrophotometric Procedure to
	Quantify Extractable Chemical
	Dialkyldithiocarbamate, Thiuram and
	Mercaptobenzothiazole Accelerators in Natural
	Rubber Latex and Nitrile Gloves
ASTM E1252	General Techniques for Obtaining Infrared Spectra
	for Qualitative Analysis

CHROMATOGRAPHY

Test Method	<u>Test</u>
ASTM D4327	Standard Test Method for Anions in Water by
	Suppressed Ion Chromatography
ASTM F2466	Determining Silicone Volatiles in Silicone Rubber
	for Transportation Applications
Ford AV-102-01	Determination of Percent Silica-Producing
	Volatiles in Silicone Rubber Adhesives/Sealers
	Which Cure at Room Temperature
GMW 17224	Test for Volatiles in Silicone Rubber DLA
ARDL 3138	Identification of Rubber Chemicals by High
	Performance Liquid Chromatography
ARDL 3174	Residual Accelerator Analysis
ARDL 3110	Thin Layer Chromatography (TLC)
ARDL 3160	Gas Chromatrograph/Mass Spectrometer and Auto
	Sampler

(A2LA Cert. No. 0255.02) Revised 09/05/2024

hu

DENSITY

Test Method	<u>Test</u>
ASTM D297 (Section 16.3.1)	Rubber Products – Chemical Analysis
ASTM D1817	Rubber Chemicals – Density
ASTM D792	Density and Specific Gravity of Plastics by
	Displacement

GRAVIMETRIC

Test Method	<u>Test</u>
ASTM D297 (Sections 17-29, 41-51)	Rubber Products – Chemical Analysis
ASTM D5630	Standard Test Method for Ash Content in Plastics

RUBBER AND FOOD CONTACT ASSESSMENT

Test Method	<u>Test</u>
ARDL 3171	Formula Evaluation and Extractable Testing
21 CFR 177.2600	Rubber Articles Intended for Repeated Use

STATE OF CURE

<u>Test Method</u>	<u>Test</u>
ARDL 3135	Crosslink Density

MICROSCOPY

Test Method	<u>Test</u>
ARDL 3809	Light Optical (LOM): Carbon Black/Inorganic
	Filler Dispersion
ASTM D3576 (Procedure B)	Light Optical (LOM): Cell Size – Cellular Plastics
ARDL 3802	Light Optical (LOM): Cell Size – Cellular Plastics
ARDL 3812	Light Optical (LOM): Failure Analysis
ARDL 3816	Scanning Electron (SEM/EDX)
ARDL 3815	Scanning Electron: Microdispersion of Inorganic
	Fillers
ARDL 3813	Scanning Electron: Elemental Analysis
ASTM D3849-95a Historical	Transmission Electron: Primary Aggregate
ARDL 3803	Transmission Electron: Primary Aggregate
ARDL 3805	Transmission Electron: Polymer Morphology

POLYMER BARRIER PROPERTIES

Test Method	<u>Test</u>
ASTM D1434-82R23 Historical	Determining Gas Permeability Characteristics of
	Plastic Film and Sheeting
ASTM D6978	Standard Practice for Assessment of Resistance of
	Medical Gloves to Permeation by Chemotherapy
	Drugs
ASTM F739	Permeation of Liquids and Gases Through
	Protective Clothing Materials Under Conditions
	of Continuous Contact

hu

POLYMER BARRIER PROPERTIES (continued)

Test Method	<u>Test</u>
ASTM F1383	Permeation of Liquids and Gases Through
	Protective Clothing Materials Under Conditions
	of Intermittent Contact
ISO 6529	Protective Clothing – Protection Against
	Chemicals – Determination of Resistance of
	Protective Clothing Materials to Permeation by
	Liquids and Gases
DIN EN 16523-1	Determination of Material Resistance to
	Permeation by Chemicals – Permeation by Liquid
	Chemical Under Conditions of Continuous
	Contact
ASTM E96/E96M	Water Vapor Transmission of Materials
ASTM F903	Resistance of Materials Used in Protective
	Clothing to Penetration by Liquids
ASTM F3267 Sections 7-10, 11.1	Protective Clothing Chemotherapy Resistance

THERMAL

Test Method	<u>Test</u>
ASTM D3418	Transition Temperatures and Enthalpies of Fusion
	and Crystallization of Polymers by Differential
	Scanning Calorimetry (DSC)
ASTM D3850	Rapid Thermal Degradation of Solid Electrical
	Insulating Materials by Thermogravimetric
	Method (TGA)
ASTM D3895	Oxidative-Induction Time of Polyolefins by
	Differential Scanning Calorimetry (DSC)
ASTM D4419	Measurement of Transition Temperatures of
	Petroleum Waxes by Differential Scanning
	Calorimetry (DSC)
ASTM D4565 (Sections 17-18)	Physical and Environmental Performance
	Properties of Insulations and Jackets for
	Telecommunications Wire and Cable (Oxygen
	Induction Time)
ASTM D4591	Determining Temperatures and Heats of
	Transitions of Fluoropolymers by Differential
4 CTD 4 D T 42 (Scanning Calorimetry (DSC)
ASTM D7426	Assignment of the DSC Procedure for
	Determining Tg of a Polymer or an Elastomeric
A CTM F702	Compound
ASTM E793	Enthalpies of Fusion and Crystallization by
A CTM F704	Differential Scanning Calorimetry (DSC)
ASTM E794	Melting and Crystallization Temperatures by
A CTM F1260	Thermal Analysis
ASTM E1269	Determining Specific Heat Capacity by
ACTM F1256	Differential Scanning Calorimetry (DSC)
ASTM E1356	Assignment of the Glass Transition Temperatures
ACTM F2160	by Differential Scanning Calorimetry (DSC)
ASTM E2160	Heat of Reaction of Thermally Reactive Materials
	by Differential Scanning Calorimetry (DSC)

THERMAL (continued)

Test Method	<u>Test</u>
ASTM F2625	Measurement of Enthalpy of Fusion, Percent
	Crystallinity, and Melting Point of Ultra-High-
	Molecular Weight Polyethylene by Means of
	Differential Scanning Calorimetry
ISO 11357-2	Plastics – Differential Scanning Calorimetry
	(DSC) – Determination of Glass Transition
	Temperature and Glass Transition Step Height
ISO 11357-3	Plastics – Differential Scanning Calorimetry
	(DSC) – Determination of Temperature and
100 11257 5	Enthalpy of Melting and Crystallization
ISO 11357-5	Plastics – Differential Scanning Calorimetry
	(DSC) – Determination of Characteristic Reaction
	- Curve Temperatures and Times, Enthalpy of
ASTM D5992	Reaction and Degree of Conversion
ASTM D3992	Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials
	Using Vibratory Methods
ASTM E1640	Assignment of the Glass Transition Temperature
ASTWIE1040	by Dynamic Mechanical Analysis
ISO 6721-4	Plastics – Determination of Dynamic Mechanical
150 0/21-4	Properties – Tensile Vibration – Non-Resonance
	Method
ASTM E831	Linear Thermal Expansion of Solid Materials by
	Thermomechanical Analysis
ISO 11359-1	Plastics – Thermomechanical Analysis (TMA) –
	General Principles
ISO 11359-2	Plastics – Thermomechanical Analysis (TMA) –
	Determination of Coefficient of Linear Thermal
A CED 4 D (200	Expansion and Glass Transition Temperature
ASTM D6370	Rubber – Compositional Analysis by
ASTM E1131	Thermogravimetry (TGA) Compositional Analysis by Thermogravimetry
ASTM E1131 ASTM E2550	Thermal Stability by Thermogravimetric
ISO 9924-1	Determination of the Composition of Vulcanizes
150 9924-1	and Uncured Compounds by Thermogravimetric
ISO 9924-2	Rubber and Rubber Products – Determination of
	the Composition of Vulcanizates and Uncured
	Compounds by Thermogravimetry –
	Acrylonitrile-Butadiene and Halobutyl Rubbers
ISO 9924-3	Determination of the Composition of Vulcanizes
	and Uncured Compounds by Thermogravimetric

LEACHING FOR HALIDES AND SULFUR

Test Method	Test
ASTM D512	Standard Test Methods for Chloride Ion in Water
ASTM D516	Standard Test Method for Sulfate Ion in Water
MIL-STD 2041E (SH) – Notice 1- Appendix A	Control of Detrimental Materials
Section A.6	
MIL-STD 2190 (SH) ¹ (Withdrawn)	Non-Metallic Seal Materials
ASTM D3566 (Sections 9.1-9.15)	Rubber – Determination of Bromine in the
	Presence of Chlorine by Oxygen Combustion

CARBON BLACK

Test Method	<u>Test</u>
ASTM D1510 (Method A)	Iodine Adsorption Number
ASTM D2414	Oil Absorption Number (OAN)
ASTM D1506 (Method A)	Ash Content
ASTM D1618	Transmittance of Toluene Extract
ASTM D1619 (Method A)	Carbon Black – Sulfur Content
ASTM D1508	Pelleted Fines and Attrition
ASTM D1509 (Method A)	Carbon Black – Heating Loss
ASTM D1514	Sieve Residue
ASTM D1513	Pour Density Pelleted
ASTM D1512 (Method A)	pH Value

MOISTURE CONTENT BY KARL FISCHER TITRATION

Test Method	<u>Test</u>
ASTM D6869	Coulometric and Volumetric Determination of
	Moisture in Plastics Using the Karl Fischer
	Reaction (the Reaction of Iodine with Water)
ISO 15512	Plastics – Determination of Water Content

FLASHPOINT

Test Method	<u>Test</u>
ASTM D92	Flash Points and Fire Points by Cleveland Open
	Cup Tester

CONTACT ANGLE DETERMINATION & SURFACE TENSION

Test Method	<u>Test</u>
ASTM D5946	Corona-Treated Polymer Films Using Water
	Contact Angle Measurements
ASTM D7334	Surface Wettability of Coatings, Substrates, and
	Pigments by Advancing Contact Angle
	Measurement
ASTM D7490	Measurement of the Surface Tension of Solid
	Coatings, Substrates, and Pigments Using Contact
	Angle Measurements
ISO 15989	Plastics – Film and Sheeting – Measurement of
	Water-Contact Angle of Corona-Treated Films
ASTM D1417 (Section 7)	Rubber Lattices – Synthetic

PERSONAL PROTECTIVE EQUIPMENT

Test Method	Test
BS EN ISO 374-4	Resistance to Degradation by Chemicals
BS EN ISO 21420 Clause 5.1 and 6.1	Sizing and Measurement of Gloves
BS EN ISO 21420 Clause 4.3.2 and ISO 3071	pH Determination of Gloves
BS EN ISO 21420 Clause 5.2	Dexterity of Gloves

Note: This laboratory's scope contains withdrawn or superseded methods. As a clarifier, this indicates that the applicable method itself has been withdrawn or is now considered "historical" and not that the laboratory's accreditation for the method has been withdrawn

(A2LA Cert. No. 0255.02) Revised 09/05/2024

Note: The laboratory is accredited for the test methods listed above. The accredited test methods are used in determining compliance with the material and/or safety specifications listed below; however, the inclusion of these material specifications on this Scope does not confer laboratory accreditation to the material specifications. Inclusion of these material specifications on this Scope also does not confer accreditation for every method embedded within the specification. Only the methods listed above on this Scope are accredited.

ASTM D4626, E682

European Standards: BS EN 71-3

Vanderbilt Latex Handbook (3rd Edition) (for Reference Only)

EPA Method 24 (see Note 1 below)

Note: For Determination of Volatile Matter Content, Water Content, Density and Weight Solids of Surface Coatings, refer to test methods ASTM D1475, D2369 and D4017 in the accredited portion of this scope listed above.

h_

Accredited Laboratory

A2LA has accredited

AKRON RUBBER DEVELOPMENT LABORATORY, INC.

Akron, OH

for technical competence in the field of

Chemical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system

(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 5th day of June 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 0255.02

Valid to January 31, 2026